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Background
In making quantitative scientific observations, there is always a limit to our ability to

assign a number to the observation, so there is always an uncertainty associated
with any measured quantity.  There is then the question of how the quantity and its
uncertainty are best represented.  We will see that even the most straightforward
observations have an uncertainty, and two people observing the same quantity may
report different values.

The simplest case to be considered is when there is only one observation of the
quantity (or the measuring device is not precise enough to observe any variation in the
observed value), and one must estimate the minimum uncertainty.  This is really no
more than a guess by the observer as to how reliably the measurement is made. 
When reading a digital clock or timer which can be read to a second (say 38
seconds), the actual time is somewhere between 38 and 39 seconds IF the timer is
perfectly calibrated, and IF the reading was made (or the timer was stopped) at the
exact time of the event.  Under the very best of conditions, this quantity could be
represented as 38.5 seconds with an uncertainty of 0.5 seconds.  If one recognizes
that the mechanism might not have worked perfectly, a greater uncertainty would be
assigned.  In practice, most experimentalists would report this time as 38 ± 1
seconds.  If the time interval was measured repeatedly as 38 seconds, the
experimentalist might report this as 38.0 ± 0.5 seconds.  A different observer might
report the value as 38.5 ± 0.5 seconds.  This observation could be reported in three
different ways, and it is clear that there is considerable uncertainty in the assignment
of uncertainty. 

This type of estimate is usually based on how accurately the number may be read.
When reading a graduated scale, it is easy to see that a reading may fall between two
of the smallest divisions.   Pierre Vernier (1580-1637) developed the Vernier Scale
which can interpolate between divisions to 1/5, 1/10, or even 1/20 of the smallest
division on a scale.  Without a device of this type, the reading can at best be
interpolated to 1/10 of a division, and the uncertainty is more likely to be 1/5 of the
smallest division of the scale, or more.

When the measuring device is sufficiently sensitive, the readings are seen to vary
randomly over a range of values, and sometimes the variation may appear to be
systematic as if the reading is oscillating in time, when a constant value is expected. 
It is generally desirable to represent these fluctuating values as a single value with
some measure of its uncertainty. 

          Consider a group of observations: 106,111,108,105,109,115,110,112,114,101

There are a few cases in which one might pick the maximum (115) and minimum
(101) observed values to represent the range of observations, take the average of
these two extremes (108) to represent the “best” value to report, and report the
uncertainty as one-half of the range of values (7).  The set of 10 observations could be



represented as 108 ± 7.  However, one can not rule out the possibility that the next
value to be observed might be greater than 115 or less than 101.

Probability theory is based on the assumption that if there is a “true value”  which
we are attempting to observe, it is more likely that any given observation will lie closer
to this value, rather than farther away.  This could also be stated as “the probability of
an observed deviation from the true value decreases with the absolute magnitude of
the deviation.”  If the “true value” of an observation were 108, we would expect a
greater number of observations to lie in the range 106 - 110 than in the range 101 -
105 or 111 - 115.  This is not quite the case in the set of observations above.  The
theory predicts that the “best” approximation of the “true value” is the quantity that
minimizes the sum of the squares of deviations of the observed values from it.  While
this is a complex concept, the value of this “best” approximation is calculated simply
as the arithmetic mean (average) of the observations.

The average of the ten values above is 109.1.  When 109.1 is subtracted from each
of the ten values, and the differences are squared, the sum of the squared deviations
is 164.9.  If we change the target value to 109.0 or 109.2, and repeat the process, the
sum of the squared deviations is 165.0.  Changing the target value to 108.9 or 109.3
produces 165.3 for the sum of the squares of the deviations.  On this basis, 109 is a
better representation of the observations than is the mid-range value of 108.

The Statistical Method
The method can be applied to very complex situations in which observations of two

or more variables are to be described with a correlating equation, but this discussion
will only address the simplest application of assigning uncertainty to a mean.

The statistical approach recognizes that it is impossible to precisely state how
accurate an observation may be, or even how accurate an observed average or mean
might be.  The method focuses instead on a statistical quantity, which is called the
standard deviation (σ).  This quantity is used to calculate the probability that any
single observation will fall within a specified deviation from the observed mean, and
on the probability that another determination of the mean will fall within a specified
deviation of the mean.  The equations for calculating these quantities are based on
the assumption of a very large number of observations, then they are adapted for
application to smaller numbers of observations (as is the normal experimental
situation).  Some texts use different names for the standard deviation (“variance”,
“estimated standard deviation”) if there are a limited number of observations. 
Another quantity that is used in these calculations is the “degrees of freedom” of the
calculated quantity (df), which (in the case of a mean) is simply the number of
observations (N) minus 1 (df = N - 1).

The square of the standard deviation (σ 2) is defined as the sum of the squares of
the deviations from the average divided by the degrees of freedom.  The square of the
“standard deviation of the mean” (σm 2) is defined as the square of the standard
deviation divided by the number of observations.  This is more easily understood by
performing calculations on the set of data above:



==================================================================
Calculating the standard deviation (σ) and the standard deviation of the mean (σm ):

                  observations        dev of obs. from mean              (dev of obs. from mean)2

106 106 - 109.1 = - 3.1 9.61
111 111 - 109.1 =   1.9 3.61
108 108 - 109.1 = - 1.1 1.21
105 105 - 109.1 = - 4.1                                     16.81
109 109 - 109.1 = - 0.1 0.01
115 115 - 109.1 =   5.9                                      34.81
110 110 - 109.1 =   0.9 0.81
112 112 - 109.1 =   2.9 8.41
114 114 - 109.1 =   4.9                                      24.01
101 101 - 109.1 = - 8.1                                      65.61
___                           _____                                   _____

sum:            1091                             0.0     sum of squares: 164.90

                number of obs.    N = 10 ;     df = N - 1 = 9

Mean   = sum/N = 1091/10 = 109.1

    σ 2    = (sum of squares)/df = 164.90/9 = 18.3
                      σ       = 4.3

  σm 2   = σ 2/N = 18.3/10 = 1.83
  σm      = 1.4

================================================================
The statistical theory calculates that for a large number of observations, 50% of the

observations will fall within 0.675 σ of the mean and 68.3% will be within σ of the
mean.  Some other probabilities are given below.  Applying these probabilities to the
set above (recognizing that this set does not qualify as a large number of
observations), 50% of the observations are expected to fall in the interval 109.1 ±
(0.674)(4.3) =  106 to 112; 68% in the interval 109.1 ± 4.3 = 105 to 113; and 90% in the
interval 109.1 ± (1.65)(4.3) = 102 to 116.  These statistics are seen to apply to this set
of observations. 
================================================================
                        interval                   probability that an observation 
                                                               will fall within the interval

mean ± 0.674 σ  50%
mean ± 1.00 σ 68.3%
mean ± 1.65 σ 90%
mean ± 1.96 σ 95%
mean ± 2.58 σ 99%
mean ± 3.30 σ 99.9%

================================================================



Similar estimates are made regarding the probability that another determination of
the mean will fall within a certain interval, with this based on the standard deviation of
the mean.  This means that if many more sets of ten observations were made and
averaged, 50% of the means would be expected to fall within ±(0.675)(1.4) = ±0.9 of
the overall mean of all of the determinations; 68% within ± 1.4 of the overall mean;
and 90% within ± (1.65)(1.4) = ± 2.3.

---
The reader has probably noticed that there is considerable
ambiguity in the number of significant figures that are being used
for these uncertainties.  In practice, there is little justification in
stating an uncertainty to more than one significant figure.

---
These statistical calculations assume that a large number of observations are

used to calculate the mean and the standard deviation.  When smaller numbers of
observations are used, there is less confidence that the calculated values are really
representative of the statistical probabilities.  An additional factor is introduced, which
is based on the degrees of freedom, giving a combined factor which is called the
Student t-factor (W. S. Gosset developed this factor under the pseudonym “Student”).
The standard deviation of the mean is multiplied by the t-factor, which is based on the
degrees of freedom and the desired confidence level, to obtain the Confidence
Interval (δ) at the specified percentage (the level of confidence).  For the set of data
above (df = 9), various confidence intervals may be calculated:

δ50% = (.703)(1.4) = 1.0   ;  δ90% = (1.83)(1.4) = 2.6 ;  δ95% = (2.26)(1.4) = 3.1
These quantities are stated as “the uncertainty is ±1 at the 50% level of confidence”,
or “the mean value is 109 ±3 at the 95% level of confidence”.
==================================================================
t-factors for Various Levels of Confidence:

            df         t50%          t90%            t95%          t99%
  1 1.00 6.31 12.70 63.7
  2 0.816 2.92   4.30   9.92
  3 0.765 2.35   3.18   5.84
  4 0.741 2.13   2.78   4.60
  5 0.727 2.01   2.57   4.03
  6 0.718 1.94   2.45   3.71
  7 0.711 1.89   2.36   3.50
  8 0.706 1.86   2.31   3.36
  9 0.703 1.83   2.26   3.25
10 0.700 1.81   2.23   3.17
15 0.691 1.75   2.13   2.95
20 0.687 1.72   2.09   2.85
30 0.683 1.70   2.04   2.75
 ∞ 0.674 1.64   1.96   2.58

==================================================================



When an author states that a mean value is 109±1, what confidence level
should you assign to that value?  Unless more detailed information is given, the
stated uncertainty is probably the standard deviation of the mean, and the mean is
based on a limited number observations.  If there were only two observations, the
confidence level would be 50%, and if there were hundreds of observations, the
confidence level would be 68%.  In most cases, 50% is the more likely level.

Combining Uncertainties in Calculations - Propagation of Uncertainty
Various measurements that are made in science are usually combined in

order to calculate other quantities or properties that may be used in subsequent
calculations.  Each of the quantities will have an uncertainty, and the calculated value
must be assigned an uncertainty.  This is described as a propagation of uncertainty
through the calculation.  The method comes from differential equations, treating the
uncertainties as differential quantities (δ).  The value of some quantity (Z - the
dependent variable) will be calculated from an equation using observed values (W, X,
and Y - the independent variables), which have known or estimated uncertainties (δW,
δX, δY ). 

********** potentially bewildering stuff ahead ************

The equation gives Z as a function of W, X, and Y,
Z = Z(W,X,Y)  .

The differential of Z (dZ) is related to the partial derivatives of Z with respect to each of
the independent variables and the differentials of these variables.

 dZ = (∂Z/∂W)X,YdW + (∂Z/∂X)W,YdX + (∂Z/∂Y)X,WdY .
The partial derivatives are evaluated from the equation used to calculate Z, and are
represented by functions of the variables.  The estimated uncertainty in Z is calculated
as

δZ
2 = [(∂Z/∂W)X,Y]2 δW

2 + [(∂Z/∂X)W,Y]2 δX
2 + [(∂Z/∂Y)X,W]2 δY

2

*************** resume speed ***************

This is the fundamental equation for propagating uncertainties.  Fortunately, most of
the applications that you will encounter may be reduced to two simple relationships.

For Multiplication and Division:   Z = WX/Y
(δZ/Z)2 = (δW/W)2 + (δX/X)2 + (δY/Y)2

For Addition and Subtraction:   Z = W - X + Y
δZ

2 = δW
2 + δX

2 + δY
2 .

If there are powers involved in the equation using multiplication and division, 
Z = W2X3/Y1/2  ,  (δZ/Z)2 = 4(δW/W)2 + 9(δX/X)2 + (1/4)(δY/Y)2

and if there is multiplication by scalars in the equation using addition and
subtraction,

Z = 2W - 3X + Y/2  ,  δZ
2 = 4δW

2 + 9δX
2 + (1/4)δY

2  .
In applying these relationships, it is important to have the uncertainties of all the
independent variables at the same level of confidence. If the uncertainties of W, X,
and Y are at the 50% level, the calculated uncertainty in Z will be at the 50% level.



Examples:
1. Measuring a volume as the difference between two buret readings:

R1 = 5.42   ,  R2 = 42.76    ;    V = R2 - R1 = 37.34 ml  ,   δV  = ?
The last digit on the buret reading is an interpolation within the smallest
division, 0.1 ml.  A reasonable estimate of the uncertainty in each reading is
± 0.02 at the 50% level of confidence.  Applying the rule for addition and
subtraction:
δV

2 = δR1
2 + δR2

2 = (0.02)2  + (0.02)2 = 0.0008      ,       δV = 0.028
V = 37.34 ± 0.03 ml at the 50% confidence level

2. Calculating concentration from a titration:
A sample of an acid of unknown concentration is pipetted into a flask with a 25 ml
pipet, and titrated with standard base solution (0.0988 ± 0.0001 M), requiring 37.34
± 0.03 ml.  The pipet may be assumed to have an uncertainty of ± 0.03 ml.  The
equation is

      [acid] Vacid = [base] Vbase

               [acid] = [base] Vbase/Vacid = (0.0988±0.0001)(37.34±0.03)/(25.00±0.03) M
               [acid] = 0.1476 ± ?  M

(δ[acid]/[acid])2 = (δ[base]/[base])2 + (δVbase/Vbase)2 + (δVacid/Vacid)2

(  δ[acid]/0.1476)2 = (0.0001/0.0988)2 + (0.03/37.34)2 + (0.03/25.00)2

                          = 1.0x10-6 + 0.65x10-6 + 1.44x10-6 = 3.09x10-6

                    δ[acid] = (0.1476)(1.76x10 -3) = 2.6x10-4

                    [acid] = 0.1476 ± 0.0003 M

3. Calculations on Glass Beads:
mass of 5 beads (g)                  volume of 8 beads (ml)

1.790 1.06
1.916 1.11
1.870 1.06
1.728 1.10
1.726 1.12
1.836           mean 1.09   σ = 0.028
1.814           σm = 0.013
1.864      df = 4 , t50% = 0.741

mean 1.818   σ = 0.068         δ50% = 0.010
           σm = 0.026

                       df = 7 , t50% = 0.711
        δ50% = 0.018

Mean for 5 beads = 1.818 ± 0.018 g       Mean for 8 beads = 1.09 ± 0.01 ml
  mean for 1 bead = 0.364 ± 0.004 g        mean for 1 bead = 0.136 ± 0.0012 ml
Density = mass/volume = (0.364 ± 0.004)/(0.136 ± 0.0012) = 2.68 ± 0.04 g/ml

(δD/D)2 = (0.004/0.364)2 + (0.0012/0.136)2 = 0.0002 ;  δD = (2.68)(0.014)



Applications to Curve Fitting:
The link “Data Processing with Microsoft Excel” covers curve-fitting data by the

method of Linear Least Squares Regression.  This describes fitting data to an
equation of the sort

   Y = A + BX + CX2 + . . .  ,     or more generally,       Y = A + BX + CW + . . .  ,
By a procedure which gives values of the parameters (A, B, C) and the standard
deviations for these values (dA, dB, dC in that manuscript refer to σA, σB, σC).  The
standard deviations of these parameters are to be considered in the same sense as
the standard deviation of the mean in the discussion above.  The sum of the squares
of deviations in this case refers to the deviations of the input Y-values from the values
calculated from the “best fit” parameters (A, B, C) at the input values of X or X, W.  The
degrees of freedom (df) now refers to the number of observations minus the number
of parameters in the equation.

Example: The data set:       X               Y
   4.003 51.6608
28.103 53.6134
39.948 54.6060
44.01 54.9698

is regressed to the equation:   Y = A + BX   ,   giving
A =51.32055 , dA = 0.02572 
B = 0.08244 , dB = 0.00078  
R2 = 0.99982, dY = 0.024 ,  df = 2 .

The uncertainty in A (σA) is (0.816 x 0.02572) = 0.02 at the 50% confidence level,
  (2.92 x 0.02572) = 0.08 at the 90% confidence level,
   (4.30x 0.02573) = 0.1 at the 95% confidence level .

The uncertainty in B (σB) is (0.816 x 0.00078) = 0.0006 at the 50% confidence level,
  (2.92 x 0.00078) = 0.002 at the 90% confidence level,
   (4.30x 0.00078) = 0.003 at the 95% confidence level .


